
© 2009 David McGoveran – All Rights Reserved Created 3/16/2009 Page 1 of 4

Updates and Set Identities
David McGoveran

In 1994, Date and McGoveran (Ref. 3) introduced an approach to update
1
 of relational

expressions (the Date-McGoveran update rules hereinafter) that has been the subject of

considerable skepticism and debate. The approach has been refined over the intervening

years, but retains its essential features. The essence of the approach is to exploit the set

theoretic properties of relations, including their membership functions, to determine how

a collection of relations can be updated consistently. Necessarily, the update procedure

must apply to any relational expression, even if that expression involves multiple

relations.

It follows from the fact that relations are sets that the relational expression can be either

side of a set identity, and the evaluation of the updated RHS (right hand side) and LHS

(left hand side) must be equivalent. Two problems seem to arise in implementing these

conclusions:

1. In a number of set identities (reduction formulas) the numbers of sets on one side

of the identity does not match that on the other side. Thus, it would appear that

using set identities to simplify a relational expression could have a side effect of

eliminating the update of one or more relations that would have been updated in

the original expression.

2. There seems to be something wrong with the notion that relations are sets. After

all, set theory does not have update operations. Furthermore, in set theory, if two

sets have the same membership function, they are indistinguishable, whereas this

may not be the case in the common understanding of relational theory and

practice.

To understand, and resolve, these problems we will take a specific example of a set

identity (Equation 1:

A  (A  B) ≡ A

The LHS of this identity references the set B, while the RHS references only A.

According to the Date-McGoveran update rules, if these sets are relations, then an update

of relational expression involving symmetric set operations (like union and intersection)

on A and B must be applied equally to A and B. That is, the update algorithm must not be

sensitive to the order of A and B in the expression. On the surface, this seems to imply

1
 We use the term update to refer to any of set deletion, set insertion, or set modification, traditionally

presented as the operations DELETE, INSERT, and UPDATE. Note however that we understand these

quite differently from the SQL operations of the same names which are neither as consistent or powerful as

they could be, and considerably more complex and difficult to use than they need be.

© 2009 David McGoveran – All Rights Reserved Created 3/16/2009 Page 2 of 4

that the Date-McGoveran update rules will update B if the LHS expression is used, but

only A if the RHS expression is used, violating the identity.

To see that this is not the case, we need to understand the possible relationships between

sets (relations) A and B vis-à-vis their membership functions (i.e., relvar predicates).

Recall from earlier papers that an update is always characterized by a predicate and a

relation by its relvar predicate. Without going into detail, recall also that both an update

predicate and a relvar predicate can reference the current value of the relvar and that the

relation must always satisfy its relvar predicate (i.e., both before and after the update).

Note that, in understanding a set relationship among relations, we focus the relvar

predicates and insist on set updating rules. Update algorithms proposed before those of

Date-McGoveran focused on the relvar value and often on anticipating a modification of

the values of one or more specific rows. The Date-McGoveran update rules offer no

concept of modifying, inserting, or deleting a row, since they enforce the semantics of set

transformations. If a set transformation affects any particular row, its does so solely

because the update predicate applies to that row.

Because we are concerned with relations, we may assume that a meaningful binary set

operation means the relations are compatible for our purposes. We will focus on

intersection, which means – according to the Date-McGoveran update rules – that the

update predicate must satisfy the logical conjunction of RA (the relvar predicate for A)

and RB (the relvar predicate for B). There are three possibilities dictated by the relation

membership functions, each of which we address in turn:

1. A  B ≡ 0 (A necessarily disjoint with B)

2. A  B ≡ A and A  B ≡ B (hence A necessarily identical to B)

3. A  B ≠ 0 (A and B necessarily non-disjoint)

Case 1: If A and B are disjoint, then their relvar predicates are disjoint so that any tuple

may satisfy RA or RB but not both. (Note that we do not mean that the relation values are

disjoint, as this is irrelevant to the update rules.) In this case, although an update predicate

may be applied to the intersection of A and B, it cannot have any effect since it cannot

satisfy R(A  B) ≡ RA AND RB.
2

Case 2: If A and B are necessarily identical, then they have identical relvar predicates. As

will be discussed below, this means that B does not exist except as a renaming of A (or

vice-versa).

Case 3: The most interesting case is that A and B are necessarily non-disjoint. That is to

say, we may understand A as comprised of subsets A1 and A2, and B as comprised of

subsets B1 and B2. Subset A1 is that portion of A that is necessarily disjoint with B and

subset B1 is that portion of B that is necessarily disjoint with A. Thus, these subsets

2
 Recall that the Principle of Orthogonal Design (Ref. 2) requires that any two base relvars in a database

satisfy this condition. Thus, in a database so designed, only Case 1 need be considered.

© 2009 David McGoveran – All Rights Reserved Created 3/16/2009 Page 3 of 4

follow Case 1 above. Subset A2 is necessarily identical to subset B2 by the definitions, so

the update of these portions follows Case 2 above. Thus, Case 3 reduces to a combination

of Cases 1 and 2.

Now let’s return to the second problem mentioned above. While Equation 1 applies to

any sets A and B of simple set theory, it clearly does not apply to any relations A and B

of relational theory as commonly understood. In particular, relational union and

intersection operations require some notion of relation or relvar type compatibility to be

meaningful and implementable. The traditional notion of “union-compatibility” is such a

rule, but one we find overly simplistic, overly informal, and insufficiently precise.

Instead, relvar predicates, their logical relationships, and logic operations among them

form the basis of our relvar type system and control whether or not relations can be

combined by set operations.

One might object that this is a departure from simple set theory semantics with its

seemingly unconstrained operations permitted among sets. However, this presumed

property of simple set theory is an illusion. Part of what makes simple set theory “simple”

is the assumption of a universe of discourse U. All sets (such as A and B) are subsets of

U, and thus are implicitly type compatible. It is this implicit type compatibility that

makes the familiar Venn diagram formalism valid. Creating or designating a subset A of

U implicitly asserts the creation of membership function that is more restrictive than the

membership function of the set. Thus, the subset A is a subtype of the type of U. The set

identities of simple set theory do not type sets, but assume for purposes of the formula

that all sets have the same type as U (i.e., their supertype).

The importance of this is that, when applying a simple set identity, we must apply simple

set theory semantics to our understanding of the identity. The implications include:

 Set elements (tuples in relational theory) are distinguishable and countable only if

their identified properties differ, and a element labels are not element properties.

 Sets (relations in relational theory) are distinguishable and countable only if their

identified properties differ, and a set labels are not element properties.

 If two sets are defined so as to contain the same members, then they are identical (not

just equivalent by membership) and there is in fact exactly one set.

These aspects of the formalism of simple set theory imply that, in Case 2 above, A and B

should be replicas of each other. Hence the only way they can have different relvar values

would be that they were updated by name rather than by relvar predicate. This is a

violation of the update rules because it means that name is substituting for a presumed

difference between A and B that is not captured by the relvar predicates. (A discussion of

ways to create a pair of relvar predicates that capture a tacit difference between two

relations is beyond the scope of this paper. For now, assume that it can be done so there is

never a need to rely on relvar or relation names.) Asuming the rules are followed, the

only way this case can occur is if A and B are redundant relations In our version of

© 2009 David McGoveran – All Rights Reserved Created 3/16/2009 Page 4 of 4

relational semantics, names are merely convenient shorthands for relvar predicates and so

the appearance of such redundant A and B is an illusion.

In summary, even if A and B differ only by name in the database so that an update

applied to the LHS of Equation 1 results in, for example, the insert of a set of rows to B,

we are guaranteed that any such rows provide no more information than if that set of

rows had been inserted into the RHS alone. They are completely redundant. Similar

conclusions follow for set deletions and set modifications.

The above shows once again why using names as the only differentiator of two relations

is worse than a bad idea, it is a violation of set semantics. Not only does it lead to

confusion for users of a database who cannot intuit how A and B differ (except by the

fact of relvar value), it also hides critical definitional information from the DBMS and

makes semantic optimizations possible only through a patchwork of code to handle

special cases. We believe strongly that, if it is necessary to have A and B as distinct in a

database, then it is equally necessary to capture that difference as a difference in the

relvar predicates. Doing anything less can only be due to laziness, ignorance (i.e.,

inadequate relational database design skills), or obstinance.

1. Date, C. J., and McGoveran, D., “Updating Joins and Other Views,” DataBase

Programming and Design, August, 1994. Also in C. J. Date, Relational Database

Writings 1991-1994, Addison-Wesley, ©1995.

2. Date, C. J., and McGoveran, D., “A New Database Design Principle,” DataBase

Programming and Design, July, 1994. Also in C. J. Date, Relational Database

Writings 1991-1994, Addison-Wesley, ©1995.

3. Date, C. J., and McGoveran, D., “Updating Union, Intersection, and Difference

Views,” DataBase Programming and Design, June, 1994. Also in C. J. Date,

Relational Database Writings 1991-1994, Addison-Wesley, ©1995.

